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Abstract In event history analysis, the problem of modeling two interdepen-
dent processes is still not completely solved. In a frequentist framework, there
are two most general approaches: the causal approach and the system approach.
The recent growing interest in Bayesian statistics suggests some interesting
works on survival models and event history analysis in a Bayesian perspective.
In this work we present a possible solution for the analysis of dynamic interde-
pendence by a Bayesian perspective in a graphical duration model framework,
using marked point processes. Main results from the Bayesian approach and
the comparison with the frequentist one are illustrated on a real example: the
analysis of the dynamic relationship between fertility and female employment.

Keywords Event history analysis · Interdependent marked point processes ·
Frailty models · Semi-parametric Bayesian models

1 Introduction

Event history analysis deals with random sequence of events and the depen-
dence of time to an event on some explanatory variables. An appealing
approach to treat event history data is due to Arjas (1989), that considers
them as the sample path of a marked point process (MPP). Sometimes, com-
plex systems can arise when two or more different MPPs can interact with one
other. In the frequentist literature, much work has been developed focusing on
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interdependence between survival times. For the general framework of
event history analysis, there are two main approaches: the causal approach
by Blossfeld et al. (1995) and the system approach, utilized by Tuma and
Hannan (1984), but firstly described by Cox and Lewis (1972). By these
approaches, compared in Moro and Gottard (1999), it is possible to analyze
the mutual dependence of two event histories, influenced by a set of explana-
tory variables (time-constant) and processes (time-varying).

As known (see for example Cox and Wermuth 1996; Lauritzen 1996), the
chain graphical models provide an useful tool to investigate the existence of
both symmetric and asymmetric relationships among random variables and the
standard theory can be extended to a class of MPPs. The conditions under
which chain graphs could be able to identify the set of conditional indepen-
dence relationships for the class of models including both MPPs and random
variables are explored in Gottard (2006). The class of models for event his-
tory data representable by chain graphs are called graphical duration models.
Briefly, we remind that a graphical duration model is a block recursive model
where a MPP is represented as a single node in a graph (

←◦ ). Each block of
such a graph can contain only processes or variables; blocks containing vari-
ables are always before blocks with processes. Cycles are forbidden. The way
of reading conditional independencies from the graphs is given by a version
of the block-recursive Markov property. The subgraph containing only vari-
ables is treated as usual, according to LWF Markov properties (see Frydenberg
1990; Lauritzen and Wermuth 1989). We remand to Gottard (2006) for a more
extensive presentation of graphical duration models.

The aim of this paper is to evaluate a possible further development of graph-
ical duration models within a Bayesian approach, by modeling the interdepen-
dence between two event histories by way of a semi-parametric hierarchical
Bayesian model. In fact, the recent growing interest in Bayesian statistics sug-
gests some interesting works on survival models and event history analysis in a
Bayesian perspective (see for example Ibrahim et al. 2001). We extend the semi-
parametric Bayesian intensity model for a single MPP proposed by Härkänen
et al. (2000) to the case of two interdependent MPPs. The resulting model is
a semi-parametric Cox model for two MPPs, whose conditional independence
structure can be described by a chain graph. The parametric part of the model
proposed includes both observed and unobserved explanatory variables to take
into account individual frailty. The interdependence is considered in similar way
of the causal approach, making the hypothesis that the two processes depend
on each other by means of their past histories.

The paper is organized as the follows. In Sect. 2 we define notation and
recall some useful definitions. In Sect. 3 the semi-parametric Bayesian intensity
model for two interdependent MPPs and its estimation method are discussed.
Section 4 applies the model to real data from Inf-2 survey about control and
expectations of fertility in Italy, to analyze relationship between fertility and
female employment. In this section, moreover, we compare results obtained
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by the frequentist system approach (Gottard 2006) and Bayesian approach.
Discussion and conclusions are reported in Sect. 5.

2 Some preliminaries

We define notation and we recall some definitions about the class of MPPs of
our interest (for further details see Arjas 1989) and for conditional indepen-
dence involving one or two MPPs (for further details see Aalen 1987). Briefly,
a MPP Y(t, m) is as a countable set of pairs {Tn, Mn}n∈{1,2,...}, where Tn ∈ [0, τ ]
is the occurrence time of the n-th event and the mark Mn ∈ M is an addi-
tional variable associated with each Tn describing the event type; the mark
space is usually rather small. For instance, let Y(t, m) be the process describing
the individual occupational status while its mark space is M = {m1, m2} =
{to find a job, to leave a job}. From now on, we assume that the unknown prob-
ability distribution of the MPP Y(t, m) is absolutely continuous and that it can
be conveniently specified by its mark-specific hazard functions hm(t), m ∈M.
Next, we define Ht as the past history of the MPP, constructed in such a way
that Ht− contains the relevant history of Y(t, m) up to t. We call conditional
mark-specific hazard function hm (t | Ht−). Heuristically, hm (t | Ht−) dt can be
viewed as the conditional probability of a type m event in [t, t + dt), given the
pre-t history Ht− .

Now, we can say that a MPP Y(t, m) is independent of a random variable Z
if its probability distribution is not a function of Z. Therefore, given that the
probability distribution of a MPP can be entirely written in terms of its marks
specific hazard functions, using Dawid’s notation (see Dawid 1979), we can say
that

Y(t, m)⊥⊥Z2 | Z1 iff hm (t | Z1, Z2) = hm (t | Z1) (1)

for all t > 0 and m ∈M. The definition of independence between two MPPs, as
given by Schweder (see Schweder 1970), for Markov processes, and extended
by Aalen (see Aalen 1987) for a more general case, is more complex and
takes into account two different kinds of relationship: the local independence
and the stochastic independence. To explain such definition, let X(t, mX) and
Y(t, mY) be two MPPs allowing for Doob–Meyer decomposition; let HX

t− and
HY

t− be their pre-t histories. Then, X(t, mX) is locally independent of Y(t, mY),
if its probability distribution is not a function of HY

t− . Therefore, the definition
of local independence, since it involves the probability of only one MPP, is
not symmetric. Moreover, two processes X(t, mX) and Y(t, mY) are mutually
locally independent if and only if they are also stochastically independent. To
distinguish stochastic from local independence we use the symbol ⊥⊥→ for the
latter one, so that X(t, mX)⊥⊥→ Y(t, mY) means that X(t, mX) is locally indepen-
dent of Y(t, mY) as proposed in Gottard (2006). Similarly, the symbol ⊥⊥→/ states
for local dependence. By the definition given, one can deduce that, for local
independence
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X(t, mX)⊥⊥→ Y (t, mY) iff hmX

(
t | HX

t− , HY
t−

)
= hmX

(
t | HX

t−
)

(2)

for all t > 0 and mX ∈MX . Similarly,

X(t, mX)⊥⊥Y (t, mY) iff hmX

(
t | HX

t− , HY
t−

) = hmX

(
t | HX

t−
)

and
hmY

(
t | HY

t− , HX
t−

) = hmY

(
t | HY

t−
) (3)

for all t > 0, mX ∈MX and mY ∈MY . Conditional independence and condi-
tional local independence, given a set of random variables Z, definitions can be
directly derived from (1), (2) and (3).

3 The model

The probabilistic model assumed for each MPP taken into account can be con-
sidered a version of a semi-parametric Cox model.

Let us consider two MPPs X(t, mX) and Y(t, mY), with t > 0, mX ∈MX and
mY ∈ MY . Their mark-specific hazard functions hmX (t) and hmY (t) are both
decomposed as product of a non-parametric part shared by the subjects, the
baseline hazard rate (hmX

0 (t) and hmY
0 (t), respectively), and a parametric part

functions of individual factors. To model the interdependence among the two
MPPs, according with definitions given above (2–3), we assume that in each
instant of time t, the two MPPs depend one on another by their past history.

In the following we define the model considering the MPP Y(t, mY); similar
definition could be arranged for the other MPP.

The mark-specific hazard function hmY

(
t | Z, HY

t− , HX
t

)
are equal to

hmY
0 (t) exp

{
β ′mY

Z+ γ Y
mY

HY
t− + γ X

mY
HX

t

}
UmY (4)

where Z are the covariates, HY
t and HX

t the past histories of the two MPPs and
UmY is a latent variable taking into account individual frailty specific for mark
mY .

According with (2), Y(t, mY)⊥⊥→ X(t, mX) if γ X
mY
= 0 for all mY ∈MY and

t > 0, while X(t, mX)⊥⊥Y(t, mY) if both γ Y
mX
= 0 and γ X

mY
= 0 for all mY ∈MY ,

mX ∈MX and t > 0.
Following Arjas and Gasbarra (see Arjas and Gasbarra 1994), we assume

that baseline hazard functions hmY
0 (t) in (4) are piecewise constant with a sup-

port [0, Tmax] (an approximation facilitating the numerical integration of the
posterior distribution)

hmY
0 (t) =

∑
k

ak1lt∈(Tk,Tk+1]∩(0,Tmax]

where ak ≥ 0 are the levels and Tk the jumps points on (0, Tmax] for Y(t, mY).
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For each mark of each MPP, we define as prior distribution of the jump
points T1 < · · · < Tk < · · · < Tmax a Poisson process on (0, Tmax] with hy-
perparameter µ. The prior distribution of the levels a1, . . . , ak, . . . is specified
inductively as follow: we suppose that the initial level a1 ∼ �(α0, β0), and that
ak | a1, . . . , ak−1 ∼ �(α, α/ak−1).

The hyperparameters α and µ control the a priori fluctuation of the function
hmY

0 (t) and α0 and β0 the expectation and the variance of the initial level. The
hyperparameters α0, β0, α, µ assume values reflecting a vague prior knowledge
for hmY

0 (t); for each mark the hyperparameter values are α0 = 0.01, β0 = 0.1,
α = 0.1 and µ = 0.1, so that prior mean for a1 is α0/β0 = 0.1, the coeffi-
cient of variation is 1/

√
α0 = 1/

√
0.01 and the conditional standard deviation

is ak−1/
√

0.1. This construction of the baseline hazard functions hmY
0 (t), given

that the jump points are not a priori fixed, is equivalent to a non parametric
definition.

In the parametric part of the mark specific hazard functions (4), the regression
parameters βmY , γ Y

mY
and γ X

mY
coefficients are assumed a priori to be Normal

distributed centered on zero with high variance.
To take into account unobserved heterogeneity, the frailty term UmY is intro-

duced (on a multiplicative way) in the parametric part of each mark-specific
hazard function. The frailty terms are a priori assumed to be conditionally
independent and identically distributed, given a hyperparameter φ; UmY ∼
Gamma(φ, φ), so the a priori expectation and variance are respectively one
and φ−1. To control the variance it is assumed that parameter φ is a random
variable with prior distribution Gamma(2,2). The frailty terms U are assumed
to be independent of the other explanatory variables Z.

The model parameters are estimated by using Markov chain Monte Car-
lo (MCMC) integration techniques as Metropolis–Hastings algorithm, imple-
mented using BITE (see Härkänen 2002). The algorithm seems to converge
after 5,000 iterations, however, given also the very high number of (non moni-
tored) parameters in the model, we decided to discard the first 100,000 iterations
(burn-in) and to store for estimation 5,000 samples.

4 A real example

In this section, a Bayesian graphical duration model is applied to study the
relationship between fertility and female employment. The data used are from
Inf-2 survey about control and expectations of fertility in Italy (De Sandre
et al. 1997): this is a retrospective study carried out in the period November
1995 – January 1996 on a sample of 4,533 women aged 20–49 years. The data
set collect information on partnerships, fertility, employment and socio-demo-
graphic characteristics. In this example, it seems interesting to investigate the
relationship between fertility and female labor force participation viewed as two
interdependent marked point processes, possibly influenced by some original
family characteristics.
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Fig. 1 Posterior distributions of parameters γ representing interdependence

Hence, let X(t, mX) denote fertility MPP, with only one mark representing
the event is m1X =“to have a child”. Let Y(t, mY) be the MPP describing labor-
force participation, its mark space MY = {m1Y , m2Y}, where m1Y indicates
the event “to find a job” and m2Y “to leave a job”; so the process Y(t, mY) has
two marks.

Since both the MPPs of interest are strongly influenced by cohort effects,
we assume different baseline hazard functions, specific for birth cohort, C: the
cohorts considered are 1946–1955, 1956–1965, 1966–1975. This construction
avoids the assumption of proportional hazards for the variable cohort, which is
in fact unrealistic, supposing a different baseline behavior for each cohort.

The explanatory variables chosen to describe the original family character-
istics are: Z1 indicating the father’s education level (1 = Secondary or higher,
0 = otherwise) and Z2 for mother’s working experience (1 = always or nearly
always employed, 0 = otherwise).

To construct the chain graph, the set of nodes is {X(t, mX), Y(t, mY), U, Z1,
Z2, C}: variables and processes are partitioned into an ordered sequence of
three blocks, with Z1, Z2 and C in the block on the right representing pure
explanatory variables; X(t, mX) and Y(t, mY) in the block on the left represent-
ing the pure responses, whereas the unobserved variable U is in the intermediate
block.

Figure 1 shows the posterior distributions for γ coefficients; these do not give
evidence in favor of zero. Consequently X(t, mX)⊥⊥→/ Y(t, mY) | U, Z1, Z2, C and
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Fig. 2 Posterior distributions of β regression parameters

Y(t, mY)⊥⊥→/ X(t, mX) | U, Z1, Z2, C and the nodes of MPPs are connected by an
undirected edge, given that the two MPPs are interdependent.

Figure 2 illustrates the posterior distributions for β regression parameters:
βm1X Z1 and βm1X Z2 the coefficients for the MPP “to have a child”, βm1Y Z1 and
βm1Y Z2 the coefficients for the MPP “to find a job” and βm2Y Z1 and βm2Y Z2 for
the MPP “to leave a job” respectively for the covariates Z1 “father’s education”
and Z2 “mother’s working experience”. Results suggest that “father’s educa-
tion” and “mother’s working experience” are strongly related “to find a job”,
but not “to leave a job” and “to have a child”. By definition (1), this implies that
X(t, mX)⊥⊥(Z1, Z2) | Y(t, mY), U, C, but Y(t, mY)⊥⊥/ (Z1, Z2) | X(t, mX), U, C.

Figure 3 shows posterior distributions of parameters U representing individ-
ual (one for each woman) frailty coefficients, for each mark. The dissimilarities
on the posterior distributions stress the different frailties of women.
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Fig. 3 Posterior distributions of parameters U representing individual frailty for each mark

Figure 4 describes the birth cohort specific baseline hazard functions for the
fertility process. The birth cohort specific baseline hazard functions for female
labor force participation processes, not reported here, present two peaks for
“to find a job” process: respectively for 14 and 18-years and 20 and 26-years on
the first and second cohort. The process for “to leave a job” presents a peak
at 18-years for the cohort 1946–1955 and at 24-years for the cohort 1956–1965,
reflecting conventional educational courses end and common precariousness
of first jobs. Results about the third cohort are less relevant because of censor-
ing. The non-parametric part of the mark-specific hazard functions are therefore
able to capture these particular moments of women life. Note that, in case of the
process being independent of the cohort, the three baseline hazard functions are
undistinguishable. The heavy differences among them suggest a strong depen-
dence of the fertility process on the cohort. Same results have been yielded for
the labor-force participation process.

Figure 5 illustrates the resulting graph, where, for shortness and legibility, are
omitted the prior parameters and hyperparameters nodes. The missing arrows
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Fig. 4 The estimates of the birth cohort specific baseline hazard functions with their 95% credibility
interval, for the fertility process

Fig. 5 The resulting graphical duration model

from Z1 and Z2 to X(t, mX) indicate the conditional independencies mentioned
above. Note that, for assumption, the latent variable U is independent of the
other explanatory variables.

These results are consistent with the previous analysis (in Gottard 2006) with
respect to the presence of interdependence between the two processes, even if
the results are not fully comparable. As a matter of fact, the entire data set and
not only one cohort has been considered here. Moreover, model assumptions,
such as covariate included and functional form of the hazards, are completely
different. With respect to the model in Gottard (2006), the semiparametric
specification adopted here, does not require strong assumptions on the form
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of the hazard and on the specification of the relationship of processes on the
cohort effect. Furthermore, this Bayesian model allows for the inclusion of the
frailty terms in a very easy way.

5 Discussion and conclusions

This paper proposed a first attempt to study the interdependence between two
MPPs using a Bayesian graphical duration model. Bayesian approach is a very
flexible and useful instrument, allowing for a semi-parametric implementation
of the mark-specific hazard functions and individual frailty. This is particularly
appealing for studying dynamic systems with a complex association structure
and a lot of potential influencing variables and processes. The model presented
allows to avoid the hypothesis of proportional hazard for some explanatory
variables and assume it for others, giving a great flexibility. Graphical duration
models has confirmed their usefulness in illustrating the relationship among
MPPs and random variables in a precise and direct way.
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